Struct rand::distributions::Exp1 [−][src]
pub struct Exp1;
Samples floating-point numbers according to the exponential distribution,
with rate parameter λ = 1. This is equivalent to Exp::new(1.0) or
sampling with -rng.gen::<f64>().ln(), but faster.
See Exp for the general exponential distribution.
Implemented via the ZIGNOR variant1 of the Ziggurat method. The exact description in the paper was adjusted to use tables for the exponential distribution rather than normal.
Example
use rand::prelude::*; use rand::distributions::Exp1; let val: f64 = SmallRng::from_entropy().sample(Exp1); println!("{}", val);
-
Jurgen A. Doornik (2005). An Improved Ziggurat Method to Generate Normal Random Samples. Nuffield College, Oxford ↩
Trait Implementations
impl Clone for Exp1[src]
impl Clone for Exp1fn clone(&self) -> Exp1[src]
fn clone(&self) -> Exp1Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)1.0.0[src]
fn clone_from(&mut self, source: &Self)Performs copy-assignment from source. Read more
impl Copy for Exp1[src]
impl Copy for Exp1impl Debug for Exp1[src]
impl Debug for Exp1fn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl Distribution<f64> for Exp1[src]
impl Distribution<f64> for Exp1fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64[src]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64Generate a random value of T, using rng as the source of randomness.
ⓘImportant traits for DistIter<'a, D, R, T>fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> where
Self: Sized,
R: Rng, [src]
fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> where
Self: Sized,
R: Rng, Create an iterator that generates random values of T, using rng as the source of randomness. Read more