1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
use ring;
use std::io::{Read, Write};
use msgs::message::{BorrowMessage, Message, MessagePayload};
use msgs::deframer::MessageDeframer;
use msgs::fragmenter::{MessageFragmenter, MAX_FRAGMENT_LEN};
use msgs::hsjoiner::HandshakeJoiner;
use msgs::base::Payload;
use msgs::codec::Codec;
use msgs::enums::{ContentType, ProtocolVersion, AlertDescription, AlertLevel};
use msgs::enums::KeyUpdateRequest;
use error::TLSError;
use suites::SupportedCipherSuite;
use cipher::{MessageDecrypter, MessageEncrypter, self};
use vecbuf::ChunkVecBuffer;
use key;
use key_schedule::{SecretKind, KeySchedule};
use prf;
use rand;

use std::io;
use std::collections::VecDeque;

/// Generalises `ClientSession` and `ServerSession`
pub trait Session: Read + Write + Send {
    /// Read TLS content from `rd`.  This method does internal
    /// buffering, so `rd` can supply TLS messages in arbitrary-
    /// sized chunks (like a socket or pipe might).
    ///
    /// You should call `process_new_packets` each time a call to
    /// this function succeeds.
    ///
    /// The returned error only relates to IO on `rd`.  TLS-level
    /// errors are emitted from `process_new_packets`.
    ///
    /// This function returns `Ok(0)` when the underlying `rd` does
    /// so.  This typically happens when a socket is cleanly closed,
    /// or a file is at EOF.
    fn read_tls(&mut self, rd: &mut Read) -> Result<usize, io::Error>;

    /// Writes TLS messages to `wr`.
    fn write_tls(&mut self, wr: &mut Write) -> Result<usize, io::Error>;

    /// Processes any new packets read by a previous call to `read_tls`.
    /// Errors from this function relate to TLS protocol errors, and
    /// are fatal to the session.  Future calls after an error will do
    /// no new work and will return the same error.
    ///
    /// Success from this function can mean new plaintext is available:
    /// obtain it using `read`.
    fn process_new_packets(&mut self) -> Result<(), TLSError>;

    /// Returns true if the caller should call `read_tls` as soon
    /// as possible.
    fn wants_read(&self) -> bool;

    /// Returns true if the caller should call `write_tls` as soon
    /// as possible.
    fn wants_write(&self) -> bool;

    /// Returns true if the session is currently perform the TLS
    /// handshake.  During this time plaintext written to the
    /// session is buffered in memory.
    fn is_handshaking(&self) -> bool;

    /// Queues a close_notify fatal alert to be sent in the next
    /// `write_tls` call.  This informs the peer that the
    /// connection is being closed.
    fn send_close_notify(&mut self);

    /// Retrieves the certificate chain used by the peer to authenticate.
    ///
    /// For clients, this is the certificate chain of the server.
    ///
    /// For servers, this is the certificate chain of the client,
    /// if client authentication was completed.
    ///
    /// The return value is None until this value is available.
    fn get_peer_certificates(&self) -> Option<Vec<key::Certificate>>;

    /// Retrieves the protocol agreed with the peer via ALPN.
    ///
    /// A return value of None after handshake completion
    /// means no protocol was agreed (because no protocols
    /// were offered or accepted by the peer).
    fn get_alpn_protocol(&self) -> Option<String>;

    /// Retrieves the protocol version agreed with the peer.
    ///
    /// This returns None until the version is agreed.
    fn get_protocol_version(&self) -> Option<ProtocolVersion>;
}

#[derive(Clone, Debug)]
pub struct SessionRandoms {
    pub we_are_client: bool,
    pub client: [u8; 32],
    pub server: [u8; 32],
}

impl SessionRandoms {
    pub fn for_server() -> SessionRandoms {
        let mut ret = SessionRandoms {
            we_are_client: false,
            client: [0u8; 32],
            server: [0u8; 32],
        };

        rand::fill_random(&mut ret.server);
        ret
    }

    pub fn for_client() -> SessionRandoms {
        let mut ret = SessionRandoms {
            we_are_client: true,
            client: [0u8; 32],
            server: [0u8; 32],
        };

        rand::fill_random(&mut ret.client);
        ret
    }
}

fn join_randoms(first: &[u8], second: &[u8]) -> [u8; 64] {
    let mut randoms = [0u8; 64];
    randoms.as_mut().write_all(first).unwrap();
    randoms[32..].as_mut().write_all(second).unwrap();
    randoms
}

pub struct SessionSecrets {
    pub randoms: SessionRandoms,
    hash: &'static ring::digest::Algorithm,
    master_secret: [u8; 48],
}

impl SessionSecrets {
    pub fn new(randoms: &SessionRandoms,
               hashalg: &'static ring::digest::Algorithm,
               pms: &[u8])
               -> SessionSecrets {
        let mut ret = SessionSecrets {
            randoms: randoms.clone(),
            hash: hashalg,
            master_secret: [0u8; 48],
        };

        let randoms = join_randoms(&ret.randoms.client, &ret.randoms.server);
        prf::prf(&mut ret.master_secret,
                 ret.hash,
                 pms,
                 b"master secret",
                 &randoms);
        ret
    }

    pub fn new_ems(randoms: &SessionRandoms,
                   hs_hash: &[u8],
                   hashalg: &'static ring::digest::Algorithm,
                   pms: &[u8]) -> SessionSecrets {
        let mut ret = SessionSecrets {
            randoms: randoms.clone(),
            hash: hashalg,
            master_secret: [0u8; 48]
        };

        prf::prf(&mut ret.master_secret,
                 ret.hash,
                 pms,
                 b"extended master secret",
                 hs_hash);
        ret
    }

    pub fn new_resume(randoms: &SessionRandoms,
                      hashalg: &'static ring::digest::Algorithm,
                      master_secret: &[u8])
                      -> SessionSecrets {
        let mut ret = SessionSecrets {
            randoms: randoms.clone(),
            hash: hashalg,
            master_secret: [0u8; 48],
        };
        ret.master_secret.as_mut().write_all(master_secret).unwrap();
        ret
    }

    pub fn make_key_block(&self, len: usize) -> Vec<u8> {
        let mut out = Vec::new();
        out.resize(len, 0u8);

        // NOTE: opposite order to above for no good reason.
        // Don't design security protocols on drugs, kids.
        let randoms = join_randoms(&self.randoms.server, &self.randoms.client);
        prf::prf(&mut out,
                 self.hash,
                 &self.master_secret,
                 b"key expansion",
                 &randoms);

        out
    }

    pub fn get_master_secret(&self) -> Vec<u8> {
        let mut ret = Vec::new();
        ret.extend_from_slice(&self.master_secret);
        ret
    }

    pub fn make_verify_data(&self, handshake_hash: &[u8], label: &[u8]) -> Vec<u8> {
        let mut out = Vec::new();
        out.resize(12, 0u8);

        prf::prf(&mut out,
                 self.hash,
                 &self.master_secret,
                 label,
                 handshake_hash);
        out
    }

    pub fn client_verify_data(&self, handshake_hash: &[u8]) -> Vec<u8> {
        self.make_verify_data(handshake_hash, b"client finished")
    }

    pub fn server_verify_data(&self, handshake_hash: &[u8]) -> Vec<u8> {
        self.make_verify_data(handshake_hash, b"server finished")
    }
}

// --- Common (to client and server) session functions ---
static SEQ_SOFT_LIMIT: u64 = 0xffff_ffff_ffff_0000u64;
static SEQ_HARD_LIMIT: u64 = 0xffff_ffff_ffff_fffeu64;

pub struct SessionCommon {
    pub negotiated_version: Option<ProtocolVersion>,
    pub is_client: bool,
    message_encrypter: Box<MessageEncrypter>,
    message_decrypter: Box<MessageDecrypter>,
    key_schedule: Option<KeySchedule>,
    suite: Option<&'static SupportedCipherSuite>,
    write_seq: u64,
    read_seq: u64,
    peer_eof: bool,
    pub peer_encrypting: bool,
    pub we_encrypting: bool,
    pub traffic: bool,
    pub want_write_key_update: bool,
    pub message_deframer: MessageDeframer,
    pub handshake_joiner: HandshakeJoiner,
    pub message_fragmenter: MessageFragmenter,
    received_plaintext: ChunkVecBuffer,
    sendable_plaintext: ChunkVecBuffer,
    pub sendable_tls: ChunkVecBuffer,
}

impl SessionCommon {
    pub fn new(mtu: Option<usize>, client: bool) -> SessionCommon {
        SessionCommon {
            negotiated_version: None,
            is_client: client,
            suite: None,
            message_encrypter: MessageEncrypter::invalid(),
            message_decrypter: MessageDecrypter::invalid(),
            key_schedule: None,
            write_seq: 0,
            read_seq: 0,
            peer_eof: false,
            peer_encrypting: false,
            we_encrypting: false,
            traffic: false,
            want_write_key_update: false,
            message_deframer: MessageDeframer::new(),
            handshake_joiner: HandshakeJoiner::new(),
            message_fragmenter: MessageFragmenter::new(mtu.unwrap_or(MAX_FRAGMENT_LEN)),
            received_plaintext: ChunkVecBuffer::new(),
            sendable_plaintext: ChunkVecBuffer::new(),
            sendable_tls: ChunkVecBuffer::new(),
        }
    }

    pub fn is_tls13(&self) -> bool {
      match self.negotiated_version {
        Some(ProtocolVersion::TLSv1_3) => true,
        _ => false
      }
    }

    pub fn get_suite(&self) -> &'static SupportedCipherSuite {
        self.suite.as_ref().unwrap()
    }

    pub fn set_suite(&mut self, suite: &'static SupportedCipherSuite) {
        self.suite = Some(suite);
    }

    pub fn get_mut_key_schedule(&mut self) -> &mut KeySchedule {
        self.key_schedule.as_mut().unwrap()
    }

    pub fn get_key_schedule(&self) -> &KeySchedule {
        self.key_schedule.as_ref().unwrap()
    }

    pub fn set_key_schedule(&mut self, ks: KeySchedule) {
        self.key_schedule = Some(ks);
    }

    pub fn set_message_encrypter(&mut self,
                                 cipher: Box<MessageEncrypter>) {
        self.message_encrypter = cipher;
        self.write_seq = 0;
        self.we_encrypting = true;
    }

    pub fn set_message_decrypter(&mut self,
                                 cipher: Box<MessageDecrypter>) {
        self.message_decrypter = cipher;
        self.read_seq = 0;
        self.peer_encrypting = true;
    }

    pub fn has_readable_plaintext(&self) -> bool {
        !self.received_plaintext.is_empty()
    }

    pub fn encrypt_outgoing(&mut self, plain: BorrowMessage) -> Message {
        let seq = self.write_seq;
        self.write_seq += 1;
        self.message_encrypter.encrypt(plain, seq).unwrap()
    }

    pub fn decrypt_incoming(&mut self, encr: Message) -> Result<Message, TLSError> {
        // Perhaps if we send an alert well before their counter wraps, a
        // buggy peer won't make a terrible mistake here?
        // Note that there's no reason to refuse to decrypt: the security
        // failure has already happened.
        if self.read_seq == SEQ_SOFT_LIMIT {
            self.send_close_notify();
        }

        let seq = self.read_seq;
        self.read_seq += 1;
        self.message_decrypter.decrypt(encr, seq)
    }

    pub fn process_alert(&mut self, msg: Message) -> Result<(), TLSError> {
        if let MessagePayload::Alert(ref alert) = msg.payload {
            // If we get a CloseNotify, make a note to declare EOF to our
            // caller.
            if alert.description == AlertDescription::CloseNotify {
                self.peer_eof = true;
                return Ok(());
            }

            // Warnings are nonfatal for TLS1.2, but outlawed in TLS1.3.
            if alert.level == AlertLevel::Warning {
                if self.is_tls13() {
                    self.send_fatal_alert(AlertDescription::DecodeError);
                } else {
                    warn!("TLS alert warning received: {:#?}", msg);
                    return Ok(());
                }
            }

            error!("TLS alert received: {:#?}", msg);
            Err(TLSError::AlertReceived(alert.description))
        } else {
            Err(TLSError::CorruptMessagePayload(ContentType::Alert))
        }
    }

    fn do_write_key_update(&mut self) {
        // TLS1.3 putting key update triggering here breaks layering
        // between the handshake and record layer.

        let kind = if self.is_client {
            SecretKind::ClientApplicationTrafficSecret
        } else {
            SecretKind::ServerApplicationTrafficSecret
        };

        let write_key = self.get_key_schedule().derive_next(kind);
        let scs = self.get_suite();
        self.set_message_encrypter(cipher::new_tls13_write(scs, &write_key));

        if self.is_client {
            self.get_mut_key_schedule().current_client_traffic_secret = write_key;
        } else {
            self.get_mut_key_schedule().current_server_traffic_secret = write_key;
        }

        self.want_write_key_update = false;
        self.send_msg_encrypt(Message::build_key_update_notify());
    }

    /// Fragment `m`, encrypt the fragments, and then queue
    /// the encrypted fragments for sending.
    pub fn send_msg_encrypt(&mut self, m: Message) {
        if self.want_write_key_update {
            self.do_write_key_update();
        }

        let mut plain_messages = VecDeque::new();
        self.message_fragmenter.fragment(m, &mut plain_messages);

        for m in plain_messages {
            self.send_single_fragment(m.to_borrowed());
        }
    }

    /// Like send_msg_encrypt, but operate on an appdata directly.
    fn send_appdata_encrypt(&mut self,
                            payload: &[u8]) {
        if self.want_write_key_update {
            self.do_write_key_update();
        }

        let mut plain_messages = VecDeque::new();
        self.message_fragmenter.fragment_borrow(ContentType::ApplicationData,
                                                ProtocolVersion::TLSv1_2,
                                                payload,
                                                &mut plain_messages);

        for m in plain_messages {
            self.send_single_fragment(m);
        }
    }

    fn send_single_fragment(&mut self, m: BorrowMessage) {
        // Close connection once we start to run out of
        // sequence space.
        if self.write_seq == SEQ_SOFT_LIMIT {
            self.send_close_notify();
        }

        // Refuse to wrap counter at all costs.  This
        // is basically untestable unfortunately.
        if self.write_seq >= SEQ_HARD_LIMIT {
            return;
        }

        let em = self.encrypt_outgoing(m);
        self.queue_tls_message(em);
    }

    /// Are we done? ie, have we processed all received messages,
    /// and received a close_notify to indicate that no new messages
    /// will arrive?
    pub fn connection_at_eof(&self) -> bool {
        self.peer_eof && !self.message_deframer.has_pending()
    }

    /// Read TLS content from `rd`.  This method does internal
    /// buffering, so `rd` can supply TLS messages in arbitrary-
    /// sized chunks (like a socket or pipe might).
    pub fn read_tls(&mut self, rd: &mut io::Read) -> io::Result<usize> {
        self.message_deframer.read(rd)
    }

    pub fn write_tls(&mut self, wr: &mut io::Write) -> io::Result<usize> {
        self.sendable_tls.write_to(wr)
    }

    /// Send plaintext application data, fragmenting and
    /// encrypting it as it goes out.
    pub fn send_plain(&mut self, data: &[u8]) {
        if !self.traffic {
            // If we haven't completed handshaking, buffer
            // plaintext to send once we do.
            self.sendable_plaintext.append(data.to_vec());
            return;
        }

        debug_assert!(self.we_encrypting);

        if data.len() == 0 {
            // Don't send empty fragments.
            return;
        }

        self.send_appdata_encrypt(data);
    }

    pub fn start_traffic(&mut self) {
        self.traffic = true;
        self.flush_plaintext();
    }

    /// Send any buffered plaintext.  Plaintext is buffered if
    /// written during handshake.
    pub fn flush_plaintext(&mut self) {
        if !self.traffic {
            return;
        }

        while !self.sendable_plaintext.is_empty() {
            let buf = self.sendable_plaintext.take_one();
            self.send_plain(&buf);
        }
    }

    // Put m into sendable_tls for writing.
    fn queue_tls_message(&mut self, m: Message) {
        self.sendable_tls.append(m.get_encoding());
    }

    /// Send a raw TLS message, fragmenting it if needed.
    pub fn send_msg(&mut self, m: Message, must_encrypt: bool) {
        if !must_encrypt {
            let mut to_send = VecDeque::new();
            self.message_fragmenter.fragment(m, &mut to_send);
            for mm in to_send {
                self.queue_tls_message(mm);
            }
        } else {
            self.send_msg_encrypt(m);
        }
    }

    pub fn take_received_plaintext(&mut self, bytes: Payload) {
        self.received_plaintext.append(bytes.0);
    }

    pub fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let len = try!(self.received_plaintext.read(buf));

        if len == 0 && self.connection_at_eof() && self.received_plaintext.is_empty() {
            return Err(io::Error::new(io::ErrorKind::ConnectionAborted,
                                      "CloseNotify alert received"));
        }

        Ok(len)
    }

    pub fn start_encryption_tls12(&mut self, secrets: &SessionSecrets) {
        let (dec, enc) = cipher::new_tls12(self.get_suite(), secrets);
        self.message_encrypter = enc;
        self.message_decrypter = dec;
    }

    pub fn peer_now_encrypting(&mut self) {
        self.peer_encrypting = true;
    }

    pub fn we_now_encrypting(&mut self) {
        self.we_encrypting = true;
    }

    pub fn send_warning_alert(&mut self, desc: AlertDescription) {
        warn!("Sending warning alert {:?}", desc);
        let m = Message::build_alert(AlertLevel::Warning, desc);
        let enc = self.we_encrypting;
        self.send_msg(m, enc);
    }

    pub fn send_fatal_alert(&mut self, desc: AlertDescription) {
        warn!("Sending fatal alert {:?}", desc);
        let m = Message::build_alert(AlertLevel::Fatal, desc);
        let enc = self.we_encrypting;
        self.send_msg(m, enc);
    }

    pub fn send_close_notify(&mut self) {
        self.send_warning_alert(AlertDescription::CloseNotify)
    }

    pub fn process_key_update(&mut self,
                              kur: &KeyUpdateRequest,
                              read_kind: SecretKind)
                              -> Result<(), TLSError> {
        // Mustn't be interleaved with other handshake messages.
        if !self.handshake_joiner.is_empty() {
            let msg = "KeyUpdate received at wrong time".to_string();
            warn!("{}", msg);
            return Err(TLSError::PeerMisbehavedError(msg));
        }

        match *kur {
            KeyUpdateRequest::UpdateNotRequested => {}
            KeyUpdateRequest::UpdateRequested => {
                self.want_write_key_update = true;
            }
            _ => {
                self.send_fatal_alert(AlertDescription::IllegalParameter);
                return Err(TLSError::CorruptMessagePayload(ContentType::Handshake));
            }
        }

        // Update our read-side keys.
        let new_read_key = self.get_key_schedule()
            .derive_next(read_kind);
        let suite = self.get_suite();
        self.set_message_decrypter(cipher::new_tls13_read(suite, &new_read_key));

        if read_kind == SecretKind::ServerApplicationTrafficSecret {
            self.get_mut_key_schedule().current_server_traffic_secret = new_read_key;
        } else {
            self.get_mut_key_schedule().current_client_traffic_secret = new_read_key;
        }

        Ok(())
    }
}