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ABSTRACT
Data is often stored in a database management system (DBMS) but
dataframe libraries are widely used among data scientists. An im-
portant but challenging problem is how to bridge the gap between
databases and dataframes. To solve this problem, we present Con-
nectorX, a client library that enables fast and memory-efficient data
loading from various databases (e.g.,PostgreSQL,MySQL, SQLite,
SQLServer, Oracle) to different dataframes (e.g., Pandas, PyArrow,
Modin, Dask, and Polars). We first investigate why the loading pro-
cess is slow and why it consumes large memory. We surprisingly
find that the main overhead comes from the client-side rather than
query execution and data transfer. We integrate several existing
and new techniques to reduce the overhead and carefully design
the system architecture and interface to make ConnectorX easy to
extend to various databases and dataframes. Moreover, we propose
server-side result partitioning that can be adopted by DBMSs in
order to better support exporting data to data science tools. We
conduct extensive experiments to evaluate ConnectorX and com-
pare it with popular libraries. The results show that ConnectorX
significantly outperforms existing solutions. ConnectorX is open
sourced at: https://github.com/sfu-db/connector-x.

1 INTRODUCTION
Dataframe libraries such as Pandas [40], Dask [45], andModin [41]
are widely used among data scientists for data manipulation and
analysis. In contrast, enterprise environments often store their data
in database management systems (DBMSs). Thus, the first step
in most data science applications is to load data from the DBMS.
Unfortunately, this data loading process is not only notoriously
slow but also consumes inordinate amounts of client memory [2–
5, 35], which easily leads to out-of-memory errors or performance
degradation. Therefore, bridging the gap between databases and
dataframes is of great interest to both academia and industry [27,
32, 35, 49].

Example 1.1. Pandas is the most widely used dataframe library in
Python, with a total 1.2B downloads on PyPI as of Jan 2022. Suppose
that a data scientist loads the TPC-H ‘lineitem’ table (7.2 GB) from
PostgreSQL into a Pandas.DataFrame using the Pandas read_sql
call in Figure 1. The function specifies a query string and database
connection (e.g., conn), retrieves the query results, and loads them
into a DataFrame object. We conducted an experiment using two
AWS instances, where PostgreSQL was deployed on one instance and
the code was run on another instance (see Section 3 for details). The
whole data loading process is highly inefficient—it takes 12.5 mins
and consumes over 95.6 GB of memory. In fact, the actual time spent
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Dataframe
Database

Total Time Peak Memory
Pandas 12.46 mins 95.6 GB
ConnectorX 0.97 min 31.4 GB

Bridging the gap between Databases and Dataframes

Figure 1: Speed up loading the lineitem table (7.2 GB in CSV)
from database to dataframe with less memory usage.

on query execution is less than 1 min (13× time overhead) and the
final Pandas.DataFrame is only 24.4 GB (4× memory overhead) .

This issue has plagued the data science community for a long
time [2–5]. The research community has sought to “push the code to
the data” by translating dataframe APIs into SQL [27, 32]. However,
these systems are still at an early stage and only support a small
fraction of the hundreds of e.g., Pandas DataFrame functions. There-
fore, pulling data out of the DBMS remains the dominant approach.
New DBMSs like Lakehouse [49] and DuckDB [44] use a common
memory format between the execution system and client library to
minimize loading costs, however this requires switching to a new
DBMS, which is costly and infeasible for legacy applications.

This focus of this paper is to develop an efficient data loader
for dataframes (i.e., read_sql) that is easily compatible with both
existing client data science libraries and legacy DBMSs. Note that
data scientists need only change a single line of client code to enjoy
the benefits (see Figure 1).

Although there are some existing efforts in this direction, each
only offers a partial solution [6, 41, 45, 48]. Chunking [48] reduces
the memory pressure by loading data one chunk at a time, but
does not reduce the overall load time. Partitioning the query into
multiple subqueries loaded in parallel only partially reduces the
runtime and does not address memory pressure [41, 45]. Other
libraries like Turbodbc [6] tackle both memory and runtime issues,
but are limited to a single driver (ODBC), suffer under an inefficient
ODBC driver implementation (PostgreSQL), and do not leverage
query partitioning.

This paper describes ConnectorX, a fast and memory-efficient
data loading library that supports many DBMSs (e.g., PostgreSQL,
SQLite, MySQL, SQLServer, Oracle) to client dataframes (e.g., Pan-
das, PyArrow,Modin, Dask, and Polars). As part of implementing
ConnectorX, we sought to address four major questions.

First, where are the actual data loading bottlenecks? We pro-
file the Pandas read_sql implementation (due to its popularity).
We find that the runtime can be split into two parts: the server
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side runtime includes query execution, serialization, and network
transfer, and the client side includes deserialization and conversion
into a dataframe. We were surprised to find that >85% of time is
spent in the client, and that the conversion materializes all inter-
mediate transformation results in memory. These findings suggest
that client-side optimizations are sufficient to dramatically reduce
data loading costs.

Second, how do we both reduce the runtime and memory,
while also making the system extensible to new DBMSs? To
do so, we design a succinct domain-specific language (DSL) for map-
ping DBMS result representations into dataframes—this reduces
the lines of code by 1-2 orders of magnitude as compared to not
using our DSL. Under the covers, ConnectorX compiles the DSL to
execute over a streaming workflow system that efficiently trans-
lates bytes recieved from the network into objects in memory. The
workflow executes in a pipelined fashion, and combines parallel
execution, string allocation optimizations, and an efficient data
representation.

Third, are current query partitioning techniques as good as
they can get? Parallelization via query partitioning is the domi-
nant way to reduce query execution (and potentially parallel load-
ing) runtimes. Existing techniques partition the query on the client [41,
45]—for instance “SELECT * FROM lineitem” may be split into
SELECT * FROM lineitem WHERE l_orderkey < 1,500,000 and
SELECT * FROM lineitem WHERE l_orderkey ≥ 1,500,000. The
approach is popular since it is purely client-side, and ConnectorX
adopts it as well. Unfortunately, we find that it introduces extra user
burden (i.e., figuring out how to specify a proper range partitioning
scheme), load imbalances, wasted server resources, and data incon-
sistencies. Thus, we study server-side result partitioning, where
the DBMS directly partitions the query result and transfers them
to the Pandas client in parallel. We prototype and demonstrate the
benefits using PostgreSQL, and advocate DBMS vendors to add this
support in the future.

Fourth, does a new data loading library matter? Since its first
release in April 2021, ConnectorX has been widely adopted by real
users, with a total of 100K+ downloads and 540+ Github stars within
ten months. It has been applied to extracting data in ETL [7] and
loading ML data from DBMS [8]. It has also be integrated into pop-
ular open source projects such as Polars [14] and DataPrep [11].
For example, Polars is the most popular dataframe library in Rust,
and it uses ConnectorX as the default way to read data from vari-
ous databases [9]. Further, our experiments show that ConnectorX
significantly outperforms existing libraries (Pandas, Dask, Modin,
Turbodbc) when loading large query results. Compared to Pandas,
it reduces runtime by 13× and memory utilization by 3×.

In summary, our paper makes the following contributions:

(1) We perform an in-depth empirical analysis of the read_sql
function in Pandas. We surprisingly find that the main over-
head for read_sql comes from the client-side instead of
query execution and data transfer.

(2) We design and implement ConnectorX that greatly reduces
the overhead of read_sql with no requirement to modify
existing database servers and client protocols.

(3) We propose a carefully designed architecture and interface
to make ConnectorX easy to extend, and design a DSL to
simplify the type mapping from databases to dataframes.

(4) We identify the issues of client-side query partitioning, and
propose server-side result partitioning and implement pro-
totype systems to address these issues.

(5) We conduct extensive experiments to evaluate ConnectorX
and compare it with popular libraries. The results show that
ConnectorX significantly outperforms existing solutions.

The remainder of this paper is organized as follows. We review
related work in Section 2. We perform an in-depth empirical analy-
sis of read_sql in Section 3, and propose ConnectorX in Section 4.
Section 5 dives into the topic of query partitioning. We present
evaluation results in Section 6, and conclude our paper in Section 7.

2 RELATEDWORK
Bridging the gap between DBMS and ML has become a hot topic in
the database community. ConnectorX fits into the big picture by
supporting efficient data loading from DBMSs to dataframes.

Data Management for ML. ML tasks may need to access and
manage raw input or intermediate data in auxiliary format. Data
lake solutions [13, 22, 47] are usually adopted in this situation.
Lakehouse [49] proposes a new architecture that combines the key
benefits of data lakes and data warehouses. Recently, there is also
an emerging trend of building ML-specific data versioning and
feature store systems [10, 15, 28, 30, 38], which are developed to
standardize and manage model features and workflows.

On the other hand, accessing these data from external tools is
notoriously slow [32, 35, 49]. Previouswork [43] shows that existing
wire protocols suffer from redundant information and expensive
(de)serialization, and thus propose a new protocol to tackle these
issues. The same authors further develop an embedded analytical
system DuckDB [44] that can avoid the bottlenecks of result set
serialization and value-based APIs by making DBMS and analytic
tools in the same address space. Li et. al [35] adopts Flight [25] to
enable zero-copy on data export in Arrow IPC format. However,
these solutions require users to modify the source code of a database
system or switch to a new database system like DuckDB. Unlike
these approaches, ConnectorX directly leverages existing DBMSs
and client drivers, and achieves the maximum speed up within the
current implementations.

SQL-Python Integration.ML tools usually adopt dataframes [24,
40–42, 45] as the abstraction for data manipulation. Data scientists
are in general more familiar with dataframe operations, so they
usually choose to transfer the complete data from databases to the
client machine and process it using Python. To avoid moving data
out of DBMS, some systems [21, 31, 34, 36, 46] try to runML code in-
side database engines. Ibis [1] aims to convert dataframe operations
to SQL queries and run them on a connected database. Declara-
tive dataframe APIs [19, 37] are proposed to combine relational
and procedural processing, which also allows cross-optimization
between ML and database operators and has been studied by re-
cent works [23, 27, 33]. ConnectorX complements these solutions
and allows data scientist to efficiently move data out of DBMS to
conduct sophistical analysis and build ML models using the Python
data science ecosystem.

3 AN ANATOMY OF PANDAS.READ_SQL
In this section, we take an in-depth look at Pandas.read_sql [40].
There are other libraries that also provide the read_sql function-
ality and we will discuss and compare with them in Section 6. We
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Figure 2: Time break down of Pandas.read_sql. (Orange
parts happen on the client side.)

study two questions: i) where does the time go? ii) where does the
memory go? To answer them, we design and conduct an experiment
between two AWS EC2 instances (r5.4xlarge, network bandwidth:
10 Gbit/s) using TPC-H benchmark (SF=10). A DBMS (PostgreSQL
orMySQL) is deployed on one instance and Pandas.read_sql is
executed on another instance to load the lineitem table (7.2 GB in
CSV) from the DBMS. In the following, we will discuss our findings
from breaking down the time and memory usage of this experiment.

3.1 Where Does the Time Go?
Under the hood, read_sql relies on driver libraries following the
Python DB-API [26] to access databases. From the client’s perspec-
tive, the overall process has three major steps:

(1) Execution + Transfer : Server executes the query and sends the
result back to the client through network in bytes following
a specific wire protocol.

(2) Deserialization: Client parses the received bytes and returns
the query result in the form of Python objects.

(3) Conversion to dataframe: Client converts the Python objects
into NumPy [29] arrays and constructs the final dataframe.

Figure 2 shows the time break down on PostgreSQL andMySQL,
respectively. Note that orange parts all happen on the client side.

A surprising finding is that the majority of the time is actually
spent on the client side rather than on the query execution or the
data transfer. It means that accelerating query execution or com-
pressing the data for wire transfer [43] is less effective in speeding
up read_sql in this case. For example, on PostgreSQL, the query
execution and data transfer only took less than 2 minutes, but the
client side took more than 10 minutes (i.e., over 85% of the total
running time). This result suggests that we should focus on opti-
mizing the client side, which is dominated by two data conversions:
deserialization and conversion to dataframe with each accounting
for approximately 40% of the running time.

Another surprising finding is that read_sql executes each step
sequentially for PostgreSQL and MySQL by default [20]1. That is,
when the server side sends part of bytes to the client side, the client
side does not process them right away but waits until all returned
bytes are ready in a local buffer; when the client side derives part
of Python objects, it does not convert them to a dataframe right
away but waits until all Python objects are available. This will lead
to two issues. First, all intermediate results will be temporarily
kept in memory, which wastes too much memory as we will show
in Section 3.2. Second, single thread execution cannot make full
use of network and computational resources.

3.2 Where Does the Memory Go?
Next, we inspect the memory footprint of running read_sql and
show the results in Table 1. RawBytes, PythonObjects, andDataframe
1For some other databases like Oracle, while the first two steps are conducted in
parallel, the third step cannot start until the first two steps have finished.

Table 1: Memory analysis of Pandas.read_sql.

Raw Bytes Python Objects Dataframe Peak

PostgreSQL 12.4GB 52.6GB 24.4GB 95.6GB
MySQL 8.18GB 51.5GB 23.3GB2 99.1GB
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Figure 3: Time and memory change by varying chunk size.

represent the size of the bytes the client received, the intermediate
Python objects, and the final dataframe, respectively.

We observe that the peak memory is approximately 4× larger
than the size of the final dataframe. This high memory requirement
is mainly caused by two reasons. First, the intermediate result
is stored in Python objects. In Python, every object contains a
header structure that maintains information like reference count
and object’s type in addition to the data itself. This will add some
overhead on the size of the data. This overhead varies by different
types. Take integer as an example: the actual data for an integer
value only takes 8 bytes, but the header for this value has 20 bytes.
Second, all the intermediate results are kept in memory until the
final dataframe is generated. Specifically, read_sql keeps three
copies of the entire data in memory, which are stored in three
different formats: Raw Bytes, Python Objects, and Dataframe. This
unnecessary duplication of the same data is another cause of the
high memory consumption.

How Much Can Chunking Help?. Chunking [39, 48] loads data
chunk by chunk. For example, by specifying a chunk size of 1000,
read_sql will fetch and process a chuck of 1000 rows of the query
result at a time. We vary the chunk size and measure the running
time and the peak memory of loading the lineitem table. Figure 3
shows the results. For fair comparison, we concatenate all the inter-
mediate dataframes in the end to represent the entire query result.
“No Chunk” represents that chunking is not used.

We see that chunking is indeed very effective in reducing mem-
ory usage because it does not hold all the intermediate results in
memory. The peak memory usage can become almost equal to the
final dataframe size when we set the chunk size within a certain
range (e.g. 1K to 1M). However, chunking has little help in im-
proving the running time of read_sql. In fact, it will introduce
significant overhead when the chunk size is too small (e.g. 100).
Moreover, the user needs to write extra code in order to enable
chunking and handle a stream of dataframes.

3.3 Opportunities
Through an in-depth analysis of read_sql, we identify four oppor-
tunities to improve the performance: 1) Study how to optimize the
client side of read_sql because it is the main bottleneck; 2) Explore
how to change the execution model of read_sql from sequential to
parallel; 3) Investigate how to reduce data representation overhead;
4) Think about how to minimize the number of data copies.

2CHAR values are stripped in MySQL but not in PostgreSQL, which results in
dataframes with different sizes.
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4 CONNECTORX
In Section 4.1, we present system workflow and discuss how we
leverage the above opportunities to improve the performance of
read_sql from PostgreSQL to Pandas.DataFrame. ConnectorX
can be easily extended to support a large number of databases and
dataframes. We discuss how the system is architected and designed
to achieve this goal in Section 4.2.

4.1 How to Speed Up?
Overall Workflow. Like chunking, ConnectorX adopts a stream-
ing workflow, where the client loads and processes a small batch
of data at a time. In order to avoid the extra data copy and con-
catenation at the end, ConnectorX adds a Preparation Phase to
its workflow. The goal of this phase is to pre-allocate the result
dataframe so that the parsed values can be directly written to the
corresponding final slots during execution.

Figure 4 illustrates the overall workflow, which consists of two
two phases: Preparation Phase ( 1 - 3 ) and Execution Phase ( 4 - 6 ).

In the Preparation Phase, ConnectorX 1 queries the metadata
of the query result, including the number of rows and the data type
for each column. With this information, it 2 constructs the final
Pandas.DataFrame by allocating the NumPy arrays accordingly. In
order to leverage multiple cores on the client machine, ConnectorX
supports 3 partitioning the query for parallel execution.

The Execution Phase is conducted iteratively in a streaming
fashion. ConnectorX assigns each partitioned query to a dedicated
worker thread, which streams the partial query result from the
DBMS into dataframe independently in parallel. Specifically, in
each iteration of a worker thread, it 4 fetches a small batch of the
query result from the DBMS, 5 converts each cell into the proper
data format, and 6 writes the value directly to the dataframe. This
process repeats until the worker exhausts the query result.

Parallel Execution.As shown above,ConnectorX leverages query
partitioning for parallel execution. Suppose that the given query
is denoted by 𝑄 . The user specifies a range partitioning scheme
over the query result, which consists of a partition key, a partition
number, and a partition range. Based on the scheme,𝑄 can be parti-
tioned into a set of subqueries, 𝑞1, 𝑞2, · · · , 𝑞𝑛 . The partition scheme
guarantees that the union of the subquery results of 𝑞1, 𝑞2, · · · , 𝑞𝑛
is equal to the query result of 𝑄 . Thus, by fetching the results of
𝑞1, 𝑞2, · · · , 𝑞𝑛 , ConnectorX obtains the result of 𝑄 .

In Figure 4, the partitioning scheme is shown in step 0 : the
partition column ID, the partition number 3, and a partition range
(1, 3,000,000). If the range is not specified, ConnectorX automati-
cally sets the range by issuing query SELECT MIN(ID), MAX(ID)
FROM Students. Then,ConnectorX equally partitions the range into
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Src Partition
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Figure 5: Overall architecture of ConnectorX.

3 splits (ID < 1,000,000; ID ∈ [1,000,000, 2,000,000); ID ≥ 2,000,000)
and generate three subqueries3:
q1: SELECT ... FROM Students WHERE ID < 1,000,000
q2: SELECT ... FROM Students WHERE ID ∈ [1,000,000, 2,000,000)
q3: SELECT ... FROM Students WHERE ID ≥ 2,000,000

This partitioning strategy is also adopted by Modin [41] and
Dask [45]. We will discuss it further in Section 5.

String Allocation Optimization. ConnectorX pre-allocates the
NumPy arrays in advance to avoid extra data copy. However, the
buffers that the string objects point to have to be allocated on-
the-fly after knowing the actual length of each value. Moreover,
constructing a string object is not thread-safe in Python. It needs to
acquire the Python Global Interpreter Lock (GIL), which could slow
down the whole process when the degree of parallelism is large
(Section 6.2). To alleviate this overhead, ConnectorX constructs a
batch of strings at a time while acquiring the GIL instead of allo-
cating each string object separately. To shorten the time of holding
the GIL, we do not copy the real data during the construction, but
write the bytes into the allocated buffer after releasing the GIL.

For example, suppose the query result contains 100 strings of
10 bytes each. A simple approach would be creating Python string
objects on demand. That is, for each received string from the data-
base driver, we (1) acquire the GIL, (2) allocate a Python string
object of 10 bytes, (3) copy the content to the allocated buffer, (4)
release the GIL. Unlike this approach, ConnectorX keeps the string
bytes temporarily in memory and creates Python strings in batches.
Therefore, instead of acquiring the GIL 100 times, ConnectorX only
needs to do it once. Furthermore, it early releases the lock by ex-
changing the order of step (3) and step (4) because only string
allocation requires holding the GIL. Consequently, the contention
on the GIL is largely reduced.

Efficient Data Representation. The limitation of Python shown
in Section 3.2 indicates that a more efficient data representation
is needed. Therefore, we decide to use a native programming lan-
guage to implement ConnectorX. We choose Rust since it provides
efficient performance and guarantees memory safety. In addition,
there is a variety of high-performance client drivers for different
databases in Rust that ConnectorX can directly build on. In order to
fit into the data science ecosystem in Python,ConnectorX provides a
Python binding with an easy-to-use API. This allows data scientists
to download ConnectorX using “pip install connectorx” and
directly replace Pandas.read_sql with ConnectorX.read_sql.

4.2 How to Extend?
In this section, we discuss how to architect and design ConnectorX
to support various kinds of database systems and dataframes.
3For complex queries, we can use nested queries to partition their query results.
Suppose Q = “SELECT * FROM Students, Courses GROUP BY ID”. Then, 𝑞1 =
SELECT * FROM (SELECT * FROM Students, Courses GROUP BY ID) AS T WHERE
ID < 1,000,000.
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Figure 6: Example of using type mapping DSL in Connec-
torX, with illustration of simplified generated code.

Overall Architecture. ConnectorX consists of three main mod-
ules: Source (e.g. PostgreSQL,MySQL), Destination (e.g. Pandas,
PyArrow) and a bridge module Type Mapper in the middle to define
how to convert the physical representation for the data from Source
to Destination. Figure 5 illustrates the high-level architecture.

Each supportedDBMS inConnectorX has a corresponding Source
module, which reads and parses data from the DBMS, including
both metadata and query results. To support parallel execution,
the Source module is able to generate a group of Source Partition
instances, each of which is assigned a subquery. The Destination
module generates the final dataframe, including constructing the
dataframe object and letting a dedicated Destination Partition to
consume and write the data produced from a Source Partition to the
correct position in the dataframe. A Type Mapper module consists
of a set of rules that specify how to convert data from a specific
Source type to a specific Destination type. During runtime, each
subquery will be handled by a single thread, which forwards data
from a Source Partition to a Destination Partition by looking up
the conversion rules in the corresponding Type Mapper.

Interface Design.Adding a new source involves two tasks (adding
a new Destination is similar): (1) Connecting to the new Source
and supporting the functionalities required by ConnectorX (e.g.
querying metadata, fetching query results); (2) Defining the type
mapping from the new Source to existing Destinations.

(1) Connection. ConnectorX leverages existing client drivers to
implement the functionality, which is the same as other libraries.
However, other libraries require client drivers provide a certain
API. For example, Pandas needs the input connection object to
implement Python DB-API and Turbodbc only works on ODBC
drivers. Unlike these approaches, ConnectorX has no requirement
on the API of a client driver, which gives it the flexibility to choose
the fastest client driver for each DBMS. ConnectorX abstracts the
needed functionalities into a set of succinct interfaces. Adding a
new Source only requires implementing these interfaces with an
existing driver. Due to space limitation, we leave details out to our
technical report [16].

(2) Type Mapping. Different database systems define their own
type systems and physical type representations. Thus, a type map-
ping for each (database, dataframe) pair is needed. For example
INT8, CHAR, and DATE in PostgreSQL can be converted to int64,
object, and datetime64 in Pandas, and int64, large_utf8, and date64
in PyArrow, respectively.

A naive way to support this is to define how to convert each type
from each Source to each Destination manually by implementing
the corresponding conversion function. However, this approach
will lead to two pain points. First, there will be a lot of trivial
code for types with the same physical representation. It is because
in many cases, Source and Destination choose the same physical
representation (e.g. both PostgreSQL.INT8 and Pandas.int64 use
64-bit signed integer type i64 as physical type) or types that the
conversion is already automatically supported (e.g. casting from i32
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Figure 7: Network utilization by varying # partitions.

to i64 for PostgreSQL.INT4 to Pandas.int64). Second, the code will
become hard to maintain due to the large amount of conversion
functions. Suppose each DBMS has 15 data types on average, and
we want to support five DBMSs and two dataframes. Then there
will be 150 (15 × 5 × 2) type conversion functions that need to be
implemented and maintained.

In order to mitigate the aforementioned issues, ConnectorX de-
fines a succinct domain specific language (DSL) to help the develop-
ers define the type mappings, leveraging the modern macro support
in Rust [18]. Figure 6 shows an example of the DSL, in which the
mapping relations are defined in mappings. Each line consists of
three parts: the logical type and corresponding physical type of
Source, the matched logical type and physical type of Destination,
and the conversion implementation choice including auto, none,
and option. The physical types are specified in square brackets
following the logical counterparts, which makes the mapping re-
lation of both logical-physical and Source-Destination type pair
clear. For trivial conversions that are automatically supported, like
String to String and i32 to i64, a developer could specify the con-
version as auto and ConnectorX will automatically generate the
corresponding conversion functions like the example shown in
Figure 6. option is used for non-trivial conversions, for which the
developer is required to implement the corresponding type conver-
sion function. To avoid repeated definitions, none indicates that
the physical type pair is already handled. This simple DSL makes
the relation of type mapping intuitive and easy to maintain. It has
helped shorten code related to type mapping by 97% (from 37k to
1k lines of code).

5 QUERY PARTITIONING
In this section, we first discuss client-side query partitioning and
then propose server-side result partitioning.

5.1 Client-Side Query Partitioning
Client-side query partitioning partitions a query into multiple sub-
queries on the client side and query them independently in parallel.
This approach can accelerate read_sql because it utilizes the high
network bandwidth and CPU resource more efficiently. We show
the network utilization of ConnectorX by varying the number of
partitions in Figure 7. It is clear that No Partition (single connec-
tion) cannot saturate the network bandwidth at all. With more
connections fetching data in parallel, bandwidth could be more
sufficiently leveraged and thus leading to better end-to-end perfor-
mance (read_sql finishes when bandwidth usage drops to 0).

Client-side query partitioning can directly work with an existing
DBMS. This is a big advantage. However, the downsides are: (1)
User Burden. To enable query partitioning, the user has to take extra
effort to specify a range partitioning scheme over the query result
table. (2) Load Imbalance. If the query result table is not evenly
partitioned, stragglers may arise, hurting overall performance. (3)
Data Inconsistency. Since multiple subqueries are sent to the server
from independent sessions, their results may derive from different



Table 2: Comparison of different partitioning approaches. C
(S) represents client (server)-side partition. Bold font indi-
cates server-side outperforms client-side partition.

# Scan # Disk Block Miss Total Time (s)

No Partition 1 1.1M 156.1

# Partitions C S C S C S
2 3 1 3.2M 1.1M 86.4 86.7
4 5 1 3.8M 1.1M 49.1 45.7
8 9 1 3.8M 1.1M 30.4 23.9
16 17 1 17.1M 1.1M 26.7 19.6

snapshots of the database. (4)Wasted Resource. Different subqueries
may share the same costly sub-plan (e.g., full-table scan). Since the
DBMS processes each query independently, the sub-plan may be re-
peatedly executed for many times, thus wasting database resources.

5.2 Server-Side Result Partitioning
So far we have considered the situation when the underlying DBMS
cannot be modified. If the underlying DBMS could be modified,
then partitioning the query on the database server side would
address the aforementioned issues. Specifically, DBMS partitions
the query result into 𝑛 equally-sized partitions and allows the client
to fetch them through 𝑛 connections in parallel. Unlike client-side
query partitioning, server-side result partitioning does not need
the user to input any extra information. With the help of internal
statistics and a cost estimator, the DBMS has a better chance to
partition the result more evenly. It can also easily guarantee data
consistency and avoid wasted resource since the DBMS has all the
necessary information to partition and conduct executions on the
same database snapshot. In the following, we discuss the potential
design for this proposal.

SQL Syntax&Workflow.Akey requirement of supporting server-
side result partitioning is the mechanism of indicating the relation-
ship between different independent connections. To achieve this,
we can extend the existing concept of database cursor and define
the SQL syntax for server-side result partitioning as follow:
DECLARE name CURSOR FOR query INTO n;

FETCH ALL FROM partition_id OF name;

In order to support accessing the same query result through
different connections, the client first establishes a connection and
declares a cursor for the original query with an associated name.
By specifying the partition number partition_num, this cursor now
becomes globally visible to the same user in other sessions as long as
it is still valid. And its result can be then fetched through concurrent
connections with different partition_id (0, 1, ..., 𝑛 − 1). The cursor
will be released eventually when all query results are consumed.

Prototype Evaluation. Naturally, there are many approaches to
support server-side result partitioning. Briefly, our prototype mod-
ifies the PostgreSQL engine for SP queries by splitting the query
plan into 𝑛 subplans that could be executed in different connections
in parallel. Unlike client-side query partitioning, where each par-
titioned query scans the entire table independently. Each subplan
scans 1

𝑛 of the total disk pages on the same snapshot of the data,
which avoids resource waste and inconsistency. Other approaches,
such as executing the whole query and distributing the results to
different connections are also feasible. The technical report [16]
describes our prototype and alternative designs in more details.

We compare our server-side partitioning prototype with client-
side partitioning and no partitioning to fetch lineitem table from
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Figure 8: Ablation study.

PostgreSQL (the same setup with Section 3). Table 2 shows the
results of using ConnectorX in different scenarios. # Scan and #
Disk Block Miss represent the number of times the table has been
scanned, and the number of disk blocks read (subtracting the num-
ber of cache hit), respectively. We also show the time usage (Total
Time) from initiating the query to getting the final dataframe in
order to illustrate the impact of each partitioning approach to the
end-to-end read_sql procedure.

Without partitioning, PostgreSQL scans the entire table only
once and it takes 156.1 seconds to get the result dataframe. Although
client-side partitioning improves the efficiency of read_sql, it also
puts heavier burden on the DBMS. The number of scans required
increases along with the number of partitions specified (plus one
extra scan to query the range of a given column for query parti-
tioning). The number of blocks that need to be loaded from disk
is approximately 3.8

1.1 = 3.5× larger when the number of partitions
is small. With 16 partitions, it becomes 15.5× larger due to higher
contention on the buffer pool. On the contrary, the server-side Plan
Partition shows the same statistics with the baseline no matter
how many partitions it has. Furthermore, with more partitions, the
resource saving on the server side can further reduce end-to-end
time ( 26.1−19.626.1 = 25% on 16 partitions). To conclude, Plan Partition
allows the client to fully leverage the network and computation
resources, without extra overhead on the database server. We hope
that DBMS vendors can consider adding the support of server-side
result partitioning in the future.

6 EVALUATION
We conduct extensive experiments to evaluate ConnectorX.

6.1 Experimental Setup

Datasets & Workloads. (1) TPC-H [17]. We generate the TPC-H
benchmark dataset by setting the scale factor to 10. We select the
entire lineitem table, which consists of around 60M rows and 16
columns with types of INTEGER, DECIMAL, DATE and VARCHAR.
The table is approximately 7.2GB in CSV format. For experiments
that involve query partitioning, we use column l_orderkey as the
partitioning column, which is evenly distributed and thus the cardi-
nality of each subquery is similar. We also generate 22 SPJ queries
to test more complex queries, with the fetched result size ranging
from 100K to 59M. (2) DDoS [12]. This dataset contains 12.8M traffic
flows (6.3GB in CSV). This is an ML dataset with 84 feature columns
and a label column. The majority of the columns are numerical (51
DECIMAL and 29 INTEGER), and the rest five are VARCHAR. The
tested query is to load the entire table. The ID column is adopted as
the partitioning column when needed. Notice that ID is not evenly
distributed. When using four partitions, the size of each partition
is approximately 1

2 ,
1
4 ,

1
8 , and

1
8 of the entire table.

Baselines. We compare ConnectorX with four popular libraries:
Pandas [40], Dask [45], Modin [41] and Turbodbc [6]. Since Tur-
bodbc does not support Pandas destination directly, we convert its
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NumPy array result to Pandas to ensure a fair comparison. The
detailed approach is available in our technical report [16].

Hardware & Platform. Our experiments are conducted on two
AWS EC2 r5.4xlarge instances (16 vCPUs, 128GBmain memory, and
10Gbit/s network bandwidth) by default. We deploy the database on
one machine and run read_sql from another. We also show the per-
formance comparison under other network conditions, including
when the server and client reside on the same r5.4xlarge instance
(Local) and on two locally hosted machines with four Intel Xeon
E7-4870 v4 CPUs (16 cores in total), 128GB memory and 200Mbit/s
network.We use three open-source databases (PostgreSQL,MySQL,
SQLite) and one commercial database (DBMS-A).

Implementation. We have made the scripts, datasets and work-
loads publicly available at https://github.com/sfu-db/connectorx-
bench. We run each experiment five times and report the averaged
result. ConnectorX needs to issue an extra query to get the min
and max values of the partition column during the preparation
phase. We conduct experiments under both without partitioning
(No Partition) and with four partitions (With Partition) settings. We
also evaluate the performance by varying the number of partitions.
Due to space limitation, we leave details out to [16].

6.2 Ablation Study
We conduct an ablation study to gain a deep understanding of
ConnectorX’s performance and verify the efficacy of the three opti-
mization techniques: i) Query partitioning; ii) Streaming workflow;
iii) String allocation optimization. Since Figure 7 has already shown
the efficacy of query partitioning, here we evaluate the other two.
We vary the implementation of ConnectorX and observe the per-
formance change by loading the lineitem table from PostgreSQL
to Pandas. The results are shown in Figure 8. No-Streaming-Opt
represents that the streaming workflow is disabled; No-String-Opt
represents that the string allocation optimization is disabled.

In terms of running time, ConnectorX (with all optimizations) is
the fastest both with and without partitioning. Without the stream-
ing workflow, the performance drops approximately by 20% in both
cases. While the impact of string allocation optimization varies in
different numbers of partitions, it slows down the process by only
6% under the no partition setting. However, it becomes 4.6× slower
with partitioning. This is because of the overhead in acquiring GIL
during string allocation in Python. With more partitions running
in parallel, there will be more contention on the GIL, thus slowing
down the process.

In terms of peak memory usage, we can see that applying par-
titioning has little impact on memory consumption. Without the
streaming workflow optimization, No-Streaming-Opt needs 2.3×
more memory due to the large intermediate results, however, al-
though it needs 70.4GB of memory, it still saves more than 20GB of
memory comparing to the 95.6GB peak memory usage of Pandas’s
batch solution shown in Table 1. This validates the effectiveness of
using Rust in terms of data representation.

Table 3: Speed compared to ConnectorX (With Partition) on
PostgreSQL under different network bandwidth.

Bandwidth Local 10 Gbit/s 200 Mbit/s

Pandas 14.26× 12.80× 3.05×
Dask 6.09× 4.80× 5.31×
Modin 3.88× 3.45× 1.58×
Turbodbc 6.64× 6.21× 1.90×
ConnectorX-NoPart 3.16× 3.03× 1.08×

6.3 Performance Comparison
We compareConnectorXwith four baselineswhen running read_sql
to fetch the same query result into a Pandas.DataFrame. Due to
space limitation, we leave the discussion on more dataframes to
our technical report [16]. We first load the TPC-H lineitem and
DDoS tables, and then test how ConnectorX works under different
network conditions and with more complex queries.

Memory Comparison. Figure 9 evaluates the peak memory usage
of loading the entire TPC-H lineitem and DDoS tables. For the
approaches that support query partitioning (Modin, Dask, and
ConnectorX), we show the result of with partitioning, which is
usually no less than without partitioning. Pandas-Chunk enables
chunking for Pandas (chunk size: 10K according to Figure 3).

On TPC-H, we can see that the memory consumptions of Con-
nectorX and Pandas-Chunk are almost the same on all DBMS.
Their peak memory values are consistently 3× less than Pandas
on the three client-server databases and 2× less on SQLite. Dask
and Modin show similar results with Pandas. Turbodbc is more
memory efficient, but it still needs around 10GB more memory than
ConnectorX.

As forDDoS, ConnectorX outperforms other baselines to a much
larger extent because of its efficient handling of the DECIMAL type,
which is the majority type in DDoS and is 13× larger in Python
objects than in the final dataframe. Another interesting finding
is that compared to TPC-H, ConnectorX uses approximately 2×
less memory than Pandas-Chunk on DDoS. When concatenating
the chunked dataframes at the end of Pandas-Chunk, the memory
of NumPy arrays will be doubled since they need to be copied to
a larger continuous buffer. But string objects that NumPy arrays
point to only need to increase the reference count by one without
copying. Since string values only take a small proportion of the
memory usage in DDoS dataframe, the concatenation overhead of
Pandas-Chunk is much higher than on TPC-H.

Speed Comparison. Next, we compare the speed of each method.
We first show the speed comparison under high bandwidth network
setting (10Gbit/s, except for SQLite, which can only reside on the
same client instance) in Figure 10. In order to fairly compare with
baselines that do not support query partitioning, we show the result
of Modin, Dask and ConnectorX when no partitioning is applied
(the left two figures). We also test them when using partitions to
observe the potential speedup under multiple cores on the client
instance (the right two figures). Here we do not show the result of
chunking since which cannot improve the speed.

(1) No Partitioning. In almost all cases, ConnectorX performs the
best without query partitioning. It outperforms Pandas by 4.2×,
5.2×, 3.0× and 2.3× on PostgreSQL,MySQL, DBMS-A and SQLite
respectively for TPC-H, and 7.1×, 6.0× and 5.2× on PostgreSQL,
DBMS-A and SQLite for DDoS (Pandas fails to fetch the entire
DDoS table from MySQL). Modin and Dask have the extra over-
head in transferring the result from worker processes, and thus is
slower than Pandas without parallelism. In addition, they could
not finish in many cases when no partition is applied due to the

https://github.com/sfu-db/connectorx-bench
https://github.com/sfu-db/connectorx-bench
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Table 4: Speed up of ConnectorX to Pandas on SPJ queries. (Different color means ConnectorX is faster / slower than Pandas.)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Result Row# (M) 59.1 4.6 17.3 10.4 1.5 20.9 4.0 2.4 3.3 37.2 7.7 1.2 15.3 27.3 27.3 1.2 1.8 5.6 0.6 0.1 0.9 0.1

No Partition 3.8× 2.2× 2.5× 1.7× 1.2× 3.8× 1.6× 1.6× 2.3× 2.5× 3.3× 1.2× 2.5× 2.7× 2.8× 2.5× 1.0× 1.6× 1.2× 1.1× 1.0× 1.0×
With Partition 8.4× 3.0× 3.2× 1.2× 0.4× 3.4× 0.5× 0.4× 1.0× 3.3× 5.8× 0.5× 2.2× 3.1× 4.3× 1.1× 0.7× 0.7× 0.3× 0.6× 0.5× 0.5×

out-of-memory issue. Turbodbc is the fastest among all baselines.
Compared with ConnectorX, it can achieve similar or even better
performance on DBMS-A, but is 2.0× (1.8×) and 2.3× (1.3×) slower
for PostgreSQL andMySQL on TPC-H (DDoS). This variance comes
from how efficient the DBMS’s ODBC driver is implemented, which
highly determines Turbodbc’s performance. Unlike Turbodbc, Con-
nectorX has no requirement on the driver and thus is more flexible
in terms of switching to a faster driver anytime.

(2) With Partitioning. ConnectorX is the fastest one in all our ex-
periments with partitioning. Only Dask andModin support query
partitioning among baselines. To make the comparison more clear,
we copy the results of Pandas and Turbodbc without query parti-
tioning to the same figure. With partitioning, ConnectorX further
accelerates and becomes up to 12.8× (14.5×) and 6.2× (3.8×) faster
compared to Pandas and Turbodbc respectively on TPC-H (DDoS).
Modin’s speed also gets improved and it becomes the fastest base-
line approach on TPC-H. But it is still 2.5× to 6.7× slower than
ConnectorX. Dask benefits from partitioning as well but is less
stable. Sometimes it needs to restart the workers when reaching
to the memory limit, which makes it slower than ConnectorX and
Modin, and may even slower than Pandas.

(3) Different Network Conditions. We test all methods on Post-
greSQL under different network conditions. To see the gap clearly,
we use ConnectorX with partitioning as baseline and show its
speedup w.r.t. each baseline. The speedups are shown in Table 3.
ConnectorX-NoPart represents the result of ConnectorX when no
partition is applied, and bothModin andDask leverage partitioning.
It is clear that ConnectorX remains the fastest in all environments
since all values > 1. Also, the gap between ConnectorX and other
baselines becomes larger when the bandwidth is higher, which
shows the efficiency of ConnectorX in leveraging the bandwidth
resource. In addition,ConnectorX and ConnectorX-NoPart perform
similarly when the bandwidth is 200Mbit/s since a single thread
could be enough when the bandwidth is low.

(4) SPJ Queries. We evaluate ConnectorX using more complex
queries. We consider the queries with joins and predicates because
adding joins will increase the server’s query execution time and
adding predicates will affect the data transfer time between the
server and the client. By considering a wide variety of queries,
we can have a better understanding of how well ConnectorX will
perform in different scenarios. Specifically, we generate 22 queries4
(one from each TPC-H query template). For each query, we keep
SELECT, PROJECT and JOIN operators. We also alter the predicates
manually to make sure the result size is in a large range (100K to
59M) and flatten some of the nested queries to have more variety in

4https://github.com/sfu-db/connectorx-bench/tree/main/tpch-spj-workload/spj

terms of query complexity. We choose the first numerical column
as the partition column for query partitioning on ConnectorX.

For complex queries, getting metadata like the number of re-
sult rows becomes slower. In order to avoid the potentially costly
COUNT query, in this situation we choose and also suggest our
users to use Arrow as an intermediate destination from ConnectorX
and convert it into Pandas using Arrow’s to_pandas5 API.

We run all 22 queries on PostgreSQL and compare the perfor-
mance of ConnectorX with Pandas. The result in Table 4 shows
the speedup of ConnectorX to Pandas. It is clear that without parti-
tioning, ConnectorX is faster than Pandas by up to 3.8× or at least
shows similar performance. Partitioning could sometimes further
speed up the process by up to 8.4×. Surprisingly, it could also fur-
ther complicate the query, which may result in generating slower
query plans and also may have the overhead in partition column
range querying. In our experiment, some queries show performance
degradation with partitioning by up to 3.3× (Q19) especially when
the result set is small. This finding further motivates the support of
server-side result partitioning discussed in Section 5.2.

Note that ConnectorX targets on scenarios that require fetching
large query result sets. It speeds up the process by optimizing client-
side execution and saturating both network and computational
resources through parallelism. When network or query execution
on the DBMS is the bottleneck (e.g. complex queries with small
result sets), however, ConnectorX brings less benefit and sometimes
it can be even slower due to the overhead in fetching metadata.

7 CONCLUSION
In this paper, we proposed ConnectorX, an open-source library
for loading query results from DBMSs to dataframes in a fast and
memory-saving way. We conducted a thorough analysis on the
popular Pandas.read_sql function, and identified optimization
opportunities on client-side execution. We developed ConnectorX
targeting at optimizing client-side execution of read_sql without
modifying the existing implementation of database servers as well
as client drivers. ConnectorX also provides modular interfaces for
contributors to add support for more DBMSs and dataframes eas-
ily. We also identified the drawbacks of current client-side query
partitioning approaches that ConnectorX and other libraries are
using, and proposed that database systems should support server-
side result partitioning in order to tackle the issues. We performed
experiments showing that (1) optimizations applied in ConnectorX
are indeed effective at boosting the performance, (2) ConnectorX
significantly outperforms Pandas, Dask,Modin and Turbodbc in
terms of both speed and memory usage under different scenarios.

5https://arrow.apache.org/docs/python/generated/pyarrow.Table.html?pyarrow.Table.to_pandas

https://arrow.apache.org/docs/python/generated/pyarrow.Table.html?pyarrow.Table.to_pandas
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