1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use num_traits::{self, Float, FromPrimitive, Zero};
use std::ops::{Add, Div, Mul};
use crate::imp_prelude::*;
use crate::itertools::enumerate;
use crate::numeric_util;
use crate::{FoldWhile, Zip};
/// # Numerical Methods for Arrays
impl<A, S, D> ArrayBase<S, D>
where
S: Data<Elem = A>,
D: Dimension,
{
/// Return the sum of all elements in the array.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1., 2.],
/// [3., 4.]]);
/// assert_eq!(a.sum(), 10.);
/// ```
pub fn sum(&self) -> A
where
A: Clone + Add<Output = A> + num_traits::Zero,
{
if let Some(slc) = self.as_slice_memory_order() {
return numeric_util::unrolled_fold(slc, A::zero, A::add);
}
let mut sum = A::zero();
for row in self.inner_rows() {
if let Some(slc) = row.as_slice() {
sum = sum + numeric_util::unrolled_fold(slc, A::zero, A::add);
} else {
sum = sum + row.iter().fold(A::zero(), |acc, elt| acc + elt.clone());
}
}
sum
}
/// Returns the [arithmetic mean] x̅ of all elements in the array:
///
/// ```text
/// 1 n
/// x̅ = ― ∑ xᵢ
/// n i=1
/// ```
///
/// If the array is empty, `None` is returned.
///
/// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
///
/// [arithmetic mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
pub fn mean(&self) -> Option<A>
where
A: Clone + FromPrimitive + Add<Output = A> + Div<Output = A> + Zero,
{
let n_elements = self.len();
if n_elements == 0 {
None
} else {
let n_elements = A::from_usize(n_elements)
.expect("Converting number of elements to `A` must not fail.");
Some(self.sum() / n_elements)
}
}
/// Return the sum of all elements in the array.
///
/// *This method has been renamed to `.sum()` and will be deprecated in the
/// next version.*
// #[deprecated(note="renamed to `sum`", since="0.13")]
pub fn scalar_sum(&self) -> A
where
A: Clone + Add<Output = A> + num_traits::Zero,
{
self.sum()
}
/// Return the product of all elements in the array.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1., 2.],
/// [3., 4.]]);
/// assert_eq!(a.product(), 24.);
/// ```
pub fn product(&self) -> A
where
A: Clone + Mul<Output = A> + num_traits::One,
{
if let Some(slc) = self.as_slice_memory_order() {
return numeric_util::unrolled_fold(slc, A::one, A::mul);
}
let mut sum = A::one();
for row in self.inner_rows() {
if let Some(slc) = row.as_slice() {
sum = sum * numeric_util::unrolled_fold(slc, A::one, A::mul);
} else {
sum = sum * row.iter().fold(A::one(), |acc, elt| acc * elt.clone());
}
}
sum
}
/// Return sum along `axis`.
///
/// ```
/// use ndarray::{aview0, aview1, arr2, Axis};
///
/// let a = arr2(&[[1., 2., 3.],
/// [4., 5., 6.]]);
/// assert!(
/// a.sum_axis(Axis(0)) == aview1(&[5., 7., 9.]) &&
/// a.sum_axis(Axis(1)) == aview1(&[6., 15.]) &&
///
/// a.sum_axis(Axis(0)).sum_axis(Axis(0)) == aview0(&21.)
/// );
/// ```
///
/// **Panics** if `axis` is out of bounds.
pub fn sum_axis(&self, axis: Axis) -> Array<A, D::Smaller>
where
A: Clone + Zero + Add<Output = A>,
D: RemoveAxis,
{
let n = self.len_of(axis);
let mut res = Array::zeros(self.raw_dim().remove_axis(axis));
let stride = self.strides()[axis.index()];
if self.ndim() == 2 && stride == 1 {
// contiguous along the axis we are summing
let ax = axis.index();
for (i, elt) in enumerate(&mut res) {
*elt = self.index_axis(Axis(1 - ax), i).sum();
}
} else {
for i in 0..n {
let view = self.index_axis(axis, i);
res = res + &view;
}
}
res
}
/// Return mean along `axis`.
///
/// Return `None` if the length of the axis is zero.
///
/// **Panics** if `axis` is out of bounds or if `A::from_usize()`
/// fails for the axis length.
///
/// ```
/// use ndarray::{aview0, aview1, arr2, Axis};
///
/// let a = arr2(&[[1., 2., 3.],
/// [4., 5., 6.]]);
/// assert!(
/// a.mean_axis(Axis(0)).unwrap() == aview1(&[2.5, 3.5, 4.5]) &&
/// a.mean_axis(Axis(1)).unwrap() == aview1(&[2., 5.]) &&
///
/// a.mean_axis(Axis(0)).unwrap().mean_axis(Axis(0)).unwrap() == aview0(&3.5)
/// );
/// ```
pub fn mean_axis(&self, axis: Axis) -> Option<Array<A, D::Smaller>>
where
A: Clone + Zero + FromPrimitive + Add<Output = A> + Div<Output = A>,
D: RemoveAxis,
{
let axis_length = self.len_of(axis);
if axis_length == 0 {
None
} else {
let axis_length =
A::from_usize(axis_length).expect("Converting axis length to `A` must not fail.");
let sum = self.sum_axis(axis);
Some(sum / aview0(&axis_length))
}
}
/// Return variance along `axis`.
///
/// The variance is computed using the [Welford one-pass
/// algorithm](https://www.jstor.org/stable/1266577).
///
/// The parameter `ddof` specifies the "delta degrees of freedom". For
/// example, to calculate the population variance, use `ddof = 0`, or to
/// calculate the sample variance, use `ddof = 1`.
///
/// The variance is defined as:
///
/// ```text
/// 1 n
/// variance = ―――――――― ∑ (xᵢ - x̅)²
/// n - ddof i=1
/// ```
///
/// where
///
/// ```text
/// 1 n
/// x̅ = ― ∑ xᵢ
/// n i=1
/// ```
///
/// and `n` is the length of the axis.
///
/// **Panics** if `ddof` is less than zero or greater than `n`, if `axis`
/// is out of bounds, or if `A::from_usize()` fails for any any of the
/// numbers in the range `0..=n`.
///
/// # Example
///
/// ```
/// use ndarray::{aview1, arr2, Axis};
///
/// let a = arr2(&[[1., 2.],
/// [3., 4.],
/// [5., 6.]]);
/// let var = a.var_axis(Axis(0), 1.);
/// assert_eq!(var, aview1(&[4., 4.]));
/// ```
pub fn var_axis(&self, axis: Axis, ddof: A) -> Array<A, D::Smaller>
where
A: Float + FromPrimitive,
D: RemoveAxis,
{
let zero = A::from_usize(0).expect("Converting 0 to `A` must not fail.");
let n = A::from_usize(self.len_of(axis)).expect("Converting length to `A` must not fail.");
assert!(
!(ddof < zero || ddof > n),
"`ddof` must not be less than zero or greater than the length of \
the axis",
);
let dof = n - ddof;
let mut mean = Array::<A, _>::zeros(self.dim.remove_axis(axis));
let mut sum_sq = Array::<A, _>::zeros(self.dim.remove_axis(axis));
for (i, subview) in self.axis_iter(axis).enumerate() {
let count = A::from_usize(i + 1).expect("Converting index to `A` must not fail.");
azip!((mean in &mut mean, sum_sq in &mut sum_sq, &x in &subview) {
let delta = x - *mean;
*mean = *mean + delta / count;
*sum_sq = (x - *mean).mul_add(delta, *sum_sq);
});
}
sum_sq.mapv_into(|s| s / dof)
}
/// Return standard deviation along `axis`.
///
/// The standard deviation is computed from the variance using
/// the [Welford one-pass algorithm](https://www.jstor.org/stable/1266577).
///
/// The parameter `ddof` specifies the "delta degrees of freedom". For
/// example, to calculate the population standard deviation, use `ddof = 0`,
/// or to calculate the sample standard deviation, use `ddof = 1`.
///
/// The standard deviation is defined as:
///
/// ```text
/// ⎛ 1 n ⎞
/// stddev = sqrt ⎜ ―――――――― ∑ (xᵢ - x̅)²⎟
/// ⎝ n - ddof i=1 ⎠
/// ```
///
/// where
///
/// ```text
/// 1 n
/// x̅ = ― ∑ xᵢ
/// n i=1
/// ```
///
/// and `n` is the length of the axis.
///
/// **Panics** if `ddof` is less than zero or greater than `n`, if `axis`
/// is out of bounds, or if `A::from_usize()` fails for any any of the
/// numbers in the range `0..=n`.
///
/// # Example
///
/// ```
/// use ndarray::{aview1, arr2, Axis};
///
/// let a = arr2(&[[1., 2.],
/// [3., 4.],
/// [5., 6.]]);
/// let stddev = a.std_axis(Axis(0), 1.);
/// assert_eq!(stddev, aview1(&[2., 2.]));
/// ```
pub fn std_axis(&self, axis: Axis, ddof: A) -> Array<A, D::Smaller>
where
A: Float + FromPrimitive,
D: RemoveAxis,
{
self.var_axis(axis, ddof).mapv_into(|x| x.sqrt())
}
/// Return `true` if the arrays' elementwise differences are all within
/// the given absolute tolerance, `false` otherwise.
///
/// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
///
/// **Panics** if broadcasting to the same shape isn’t possible.
#[deprecated(
note = "Use `abs_diff_eq` - it requires the `approx` crate feature",
since = "0.13.0"
)]
pub fn all_close<S2, E>(&self, rhs: &ArrayBase<S2, E>, tol: A) -> bool
where
A: Float,
S2: Data<Elem = A>,
E: Dimension,
{
!Zip::from(self)
.and(rhs.broadcast_unwrap(self.raw_dim()))
.fold_while((), |_, x, y| {
if (*x - *y).abs() <= tol {
FoldWhile::Continue(())
} else {
FoldWhile::Done(())
}
})
.is_done()
}
}