1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Constructor methods for ndarray
//!
//!
#![allow(clippy::match_wild_err_arm)]
use num_traits::{Float, One, Zero};
use std::mem::MaybeUninit;
use crate::dimension;
use crate::error::{self, ShapeError};
use crate::extension::nonnull::nonnull_from_vec_data;
use crate::imp_prelude::*;
use crate::indexes;
use crate::indices;
use crate::iterators::{to_vec, to_vec_mapped};
use crate::StrideShape;
use crate::{geomspace, linspace, logspace};
/// # Constructor Methods for Owned Arrays
///
/// Note that the constructor methods apply to `Array` and `ArcArray`,
/// the two array types that have owned storage.
///
/// ## Constructor methods for one-dimensional arrays.
impl<S, A> ArrayBase<S, Ix1>
where
S: DataOwned<Elem = A>,
{
/// Create a one-dimensional array from a vector (no copying needed).
///
/// **Panics** if the length is greater than `isize::MAX`.
///
/// ```rust
/// use ndarray::Array;
///
/// let array = Array::from(vec![1., 2., 3., 4.]);
/// ```
#[deprecated(note = "use standard `from`", since = "0.13.0")]
pub fn from_vec(v: Vec<A>) -> Self {
Self::from(v)
}
/// Create a one-dimensional array with `n` evenly spaced elements from
/// `start` to `end` (inclusive). `A` must be a floating point type.
///
/// Note that if `start > end`, the first element will still be `start`,
/// and the following elements will be decreasing. This is different from
/// the behavior of `std::ops::RangeInclusive`, which interprets `start >
/// end` to mean that the range is empty.
///
/// **Panics** if `n` is greater than `isize::MAX` or if converting `n - 1`
/// to type `A` fails.
///
/// ```rust
/// use ndarray::{Array, arr1};
///
/// let array = Array::linspace(0., 1., 5);
/// assert!(array == arr1(&[0.0, 0.25, 0.5, 0.75, 1.0]))
/// ```
pub fn linspace(start: A, end: A, n: usize) -> Self
where
A: Float,
{
Self::from(to_vec(linspace::linspace(start, end, n)))
}
/// Create a one-dimensional array with elements from `start` to `end`
/// (exclusive), incrementing by `step`. `A` must be a floating point type.
///
/// **Panics** if the length is greater than `isize::MAX`.
///
/// ```rust
/// use ndarray::{Array, arr1};
///
/// let array = Array::range(0., 5., 1.);
/// assert!(array == arr1(&[0., 1., 2., 3., 4.]))
/// ```
pub fn range(start: A, end: A, step: A) -> Self
where
A: Float,
{
Self::from(to_vec(linspace::range(start, end, step)))
}
/// Create a one-dimensional array with `n` logarithmically spaced
/// elements, with the starting value being `base.powf(start)` and the
/// final one being `base.powf(end)`. `A` must be a floating point type.
///
/// If `base` is negative, all values will be negative.
///
/// **Panics** if `n` is greater than `isize::MAX` or if converting `n - 1`
/// to type `A` fails.
///
/// ```rust
/// use approx::assert_abs_diff_eq;
/// use ndarray::{Array, arr1};
///
/// # #[cfg(feature = "approx")] {
/// let array = Array::logspace(10.0, 0.0, 3.0, 4);
/// assert_abs_diff_eq!(array, arr1(&[1e0, 1e1, 1e2, 1e3]));
///
/// let array = Array::logspace(-10.0, 3.0, 0.0, 4);
/// assert_abs_diff_eq!(array, arr1(&[-1e3, -1e2, -1e1, -1e0]));
/// # }
/// ```
pub fn logspace(base: A, start: A, end: A, n: usize) -> Self
where
A: Float,
{
Self::from(to_vec(logspace::logspace(base, start, end, n)))
}
/// Create a one-dimensional array with `n` geometrically spaced elements
/// from `start` to `end` (inclusive). `A` must be a floating point type.
///
/// Returns `None` if `start` and `end` have different signs or if either
/// one is zero. Conceptually, this means that in order to obtain a `Some`
/// result, `end / start` must be positive.
///
/// **Panics** if `n` is greater than `isize::MAX` or if converting `n - 1`
/// to type `A` fails.
///
/// ```rust
/// use approx::assert_abs_diff_eq;
/// use ndarray::{Array, arr1};
///
/// # fn example() -> Option<()> {
/// # #[cfg(feature = "approx")] {
/// let array = Array::geomspace(1e0, 1e3, 4)?;
/// assert_abs_diff_eq!(array, arr1(&[1e0, 1e1, 1e2, 1e3]), epsilon = 1e-12);
///
/// let array = Array::geomspace(-1e3, -1e0, 4)?;
/// assert_abs_diff_eq!(array, arr1(&[-1e3, -1e2, -1e1, -1e0]), epsilon = 1e-12);
/// # }
/// # Some(())
/// # }
/// #
/// # example().unwrap();
/// ```
pub fn geomspace(start: A, end: A, n: usize) -> Option<Self>
where
A: Float,
{
Some(Self::from(to_vec(geomspace::geomspace(start, end, n)?)))
}
}
/// ## Constructor methods for two-dimensional arrays.
impl<S, A> ArrayBase<S, Ix2>
where
S: DataOwned<Elem = A>,
{
/// Create an identity matrix of size `n` (square 2D array).
///
/// **Panics** if `n * n` would overflow `isize`.
pub fn eye(n: Ix) -> Self
where
S: DataMut,
A: Clone + Zero + One,
{
let mut eye = Self::zeros((n, n));
for a_ii in eye.diag_mut() {
*a_ii = A::one();
}
eye
}
/// Create a 2D matrix from its diagonal
///
/// **Panics** if `diag.len() * diag.len()` would overflow `isize`.
///
/// ```rust
/// use ndarray::{Array2, arr1, arr2};
///
/// let diag = arr1(&[1, 2]);
/// let array = Array2::from_diag(&diag);
/// assert_eq!(array, arr2(&[[1, 0], [0, 2]]));
/// ```
pub fn from_diag<S2>(diag: &ArrayBase<S2, Ix1>) -> Self
where
A: Clone + Zero,
S: DataMut,
S2: Data<Elem = A>,
{
let n = diag.len();
let mut arr = Self::zeros((n, n));
arr.diag_mut().assign(&diag);
arr
}
}
#[cfg(not(debug_assertions))]
#[allow(clippy::match_wild_err_arm)]
macro_rules! size_of_shape_checked_unwrap {
($dim:expr) => {
match dimension::size_of_shape_checked($dim) {
Ok(sz) => sz,
Err(_) => {
panic!("ndarray: Shape too large, product of non-zero axis lengths overflows isize")
}
}
};
}
#[cfg(debug_assertions)]
macro_rules! size_of_shape_checked_unwrap {
($dim:expr) => {
match dimension::size_of_shape_checked($dim) {
Ok(sz) => sz,
Err(_) => panic!(
"ndarray: Shape too large, product of non-zero axis lengths \
overflows isize in shape {:?}",
$dim
),
}
};
}
/// ## Constructor methods for n-dimensional arrays.
///
/// The `shape` argument can be an integer or a tuple of integers to specify
/// a static size. For example `10` makes a length 10 one-dimensional array
/// (dimension type `Ix1`) and `(5, 6)` a 5 × 6 array (dimension type `Ix2`).
///
/// With the trait `ShapeBuilder` in scope, there is the method `.f()` to select
/// column major (“f” order) memory layout instead of the default row major.
/// For example `Array::zeros((5, 6).f())` makes a column major 5 × 6 array.
///
/// Use [`IxDyn`](type.IxDyn.html) for the shape to create an array with dynamic
/// number of axes.
///
/// Finally, the few constructors that take a completely general
/// `Into<StrideShape>` argument *optionally* support custom strides, for
/// example a shape given like `(10, 2, 2).strides((1, 10, 20))` is valid.
impl<S, A, D> ArrayBase<S, D>
where
S: DataOwned<Elem = A>,
D: Dimension,
{
/// Create an array with copies of `elem`, shape `shape`.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`.
///
/// ```
/// use ndarray::{Array, arr3, ShapeBuilder};
///
/// let a = Array::from_elem((2, 2, 2), 1.);
///
/// assert!(
/// a == arr3(&[[[1., 1.],
/// [1., 1.]],
/// [[1., 1.],
/// [1., 1.]]])
/// );
/// assert!(a.strides() == &[4, 2, 1]);
///
/// let b = Array::from_elem((2, 2, 2).f(), 1.);
/// assert!(b.strides() == &[1, 2, 4]);
/// ```
pub fn from_elem<Sh>(shape: Sh, elem: A) -> Self
where
A: Clone,
Sh: ShapeBuilder<Dim = D>,
{
let shape = shape.into_shape();
let size = size_of_shape_checked_unwrap!(&shape.dim);
let v = vec![elem; size];
unsafe { Self::from_shape_vec_unchecked(shape, v) }
}
/// Create an array with zeros, shape `shape`.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`.
pub fn zeros<Sh>(shape: Sh) -> Self
where
A: Clone + Zero,
Sh: ShapeBuilder<Dim = D>,
{
Self::from_elem(shape, A::zero())
}
/// Create an array with ones, shape `shape`.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`.
pub fn ones<Sh>(shape: Sh) -> Self
where
A: Clone + One,
Sh: ShapeBuilder<Dim = D>,
{
Self::from_elem(shape, A::one())
}
/// Create an array with default values, shape `shape`
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`.
pub fn default<Sh>(shape: Sh) -> Self
where
A: Default,
Sh: ShapeBuilder<Dim = D>,
{
Self::from_shape_simple_fn(shape, A::default)
}
/// Create an array with values created by the function `f`.
///
/// `f` is called with no argument, and it should return the element to
/// create. If the precise index of the element to create is needed,
/// use [`from_shape_fn`](ArrayBase::from_shape_fn) instead.
///
/// This constructor can be useful if the element order is not important,
/// for example if they are identical or random.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`.
pub fn from_shape_simple_fn<Sh, F>(shape: Sh, mut f: F) -> Self
where
Sh: ShapeBuilder<Dim = D>,
F: FnMut() -> A,
{
let shape = shape.into_shape();
let len = size_of_shape_checked_unwrap!(&shape.dim);
let v = to_vec_mapped(0..len, move |_| f());
unsafe { Self::from_shape_vec_unchecked(shape, v) }
}
/// Create an array with values created by the function `f`.
///
/// `f` is called with the index of the element to create; the elements are
/// visited in arbitrary order.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`.
///
/// ```
/// use ndarray::{Array, arr2};
///
/// // Create a table of i × j (with i and j from 1 to 3)
/// let ij_table = Array::from_shape_fn((3, 3), |(i, j)| (1 + i) * (1 + j));
///
/// assert_eq!(
/// ij_table,
/// arr2(&[[1, 2, 3],
/// [2, 4, 6],
/// [3, 6, 9]])
/// );
/// ```
pub fn from_shape_fn<Sh, F>(shape: Sh, f: F) -> Self
where
Sh: ShapeBuilder<Dim = D>,
F: FnMut(D::Pattern) -> A,
{
let shape = shape.into_shape();
let _ = size_of_shape_checked_unwrap!(&shape.dim);
if shape.is_c {
let v = to_vec_mapped(indices(shape.dim.clone()).into_iter(), f);
unsafe { Self::from_shape_vec_unchecked(shape, v) }
} else {
let dim = shape.dim.clone();
let v = to_vec_mapped(indexes::indices_iter_f(dim), f);
unsafe { Self::from_shape_vec_unchecked(shape, v) }
}
}
/// Create an array with the given shape from a vector. (No cloning of
/// elements needed.)
///
/// ----
///
/// For a contiguous c- or f-order shape, the following applies:
///
/// **Errors** if `shape` does not correspond to the number of elements in
/// `v` or if the shape/strides would result in overflowing `isize`.
///
/// ----
///
/// For custom strides, the following applies:
///
/// **Errors** if strides and dimensions can point out of bounds of `v`, if
/// strides allow multiple indices to point to the same element, or if the
/// shape/strides would result in overflowing `isize`.
///
/// ```
/// use ndarray::Array;
/// use ndarray::ShapeBuilder; // Needed for .strides() method
/// use ndarray::arr2;
///
/// let a = Array::from_shape_vec((2, 2), vec![1., 2., 3., 4.]);
/// assert!(a.is_ok());
///
/// let b = Array::from_shape_vec((2, 2).strides((1, 2)),
/// vec![1., 2., 3., 4.]).unwrap();
/// assert!(
/// b == arr2(&[[1., 3.],
/// [2., 4.]])
/// );
/// ```
pub fn from_shape_vec<Sh>(shape: Sh, v: Vec<A>) -> Result<Self, ShapeError>
where
Sh: Into<StrideShape<D>>,
{
// eliminate the type parameter Sh as soon as possible
Self::from_shape_vec_impl(shape.into(), v)
}
fn from_shape_vec_impl(shape: StrideShape<D>, v: Vec<A>) -> Result<Self, ShapeError> {
let dim = shape.dim;
let strides = shape.strides;
if shape.custom {
dimension::can_index_slice(&v, &dim, &strides)?;
} else {
dimension::can_index_slice_not_custom::<A, _>(&v, &dim)?;
if dim.size() != v.len() {
return Err(error::incompatible_shapes(&Ix1(v.len()), &dim));
}
}
unsafe { Ok(Self::from_vec_dim_stride_unchecked(dim, strides, v)) }
}
/// Creates an array from a vector and interpret it according to the
/// provided shape and strides. (No cloning of elements needed.)
///
/// # Safety
///
/// The caller must ensure that the following conditions are met:
///
/// 1. The ndim of `dim` and `strides` must be the same.
///
/// 2. The product of non-zero axis lengths must not exceed `isize::MAX`.
///
/// 3. For axes with length > 1, the stride must be nonnegative.
///
/// 4. If the array will be empty (any axes are zero-length), the
/// difference between the least address and greatest address accessible
/// by moving along all axes must be ≤ `v.len()`.
///
/// If the array will not be empty, the difference between the least
/// address and greatest address accessible by moving along all axes
/// must be < `v.len()`.
///
/// 5. The strides must not allow any element to be referenced by two different
/// indices.
pub unsafe fn from_shape_vec_unchecked<Sh>(shape: Sh, v: Vec<A>) -> Self
where
Sh: Into<StrideShape<D>>,
{
let shape = shape.into();
Self::from_vec_dim_stride_unchecked(shape.dim, shape.strides, v)
}
unsafe fn from_vec_dim_stride_unchecked(dim: D, strides: D, mut v: Vec<A>) -> Self {
// debug check for issues that indicates wrong use of this constructor
debug_assert!(dimension::can_index_slice(&v, &dim, &strides).is_ok());
ArrayBase {
ptr: nonnull_from_vec_data(&mut v),
data: DataOwned::new(v),
strides,
dim,
}
}
/// Create an array with uninitalized elements, shape `shape`.
///
/// Prefer to use [`maybe_uninit()`](ArrayBase::maybe_uninit) if possible, because it is
/// easier to use correctly.
///
/// **Panics** if the number of elements in `shape` would overflow isize.
///
/// ### Safety
///
/// Accessing uninitalized values is undefined behaviour. You must overwrite *all* the elements
/// in the array after it is created; for example using
/// [`raw_view_mut`](ArrayBase::raw_view_mut) or other low-level element access.
///
/// The contents of the array is indeterminate before initialization and it
/// is an error to perform operations that use the previous values. For
/// example it would not be legal to use `a += 1.;` on such an array.
///
/// This constructor is limited to elements where `A: Copy` (no destructors)
/// to avoid users shooting themselves too hard in the foot.
///
/// (Also note that the constructors `from_shape_vec` and
/// `from_shape_vec_unchecked` allow the user yet more control, in the sense
/// that Arrays can be created from arbitrary vectors.)
pub unsafe fn uninitialized<Sh>(shape: Sh) -> Self
where
A: Copy,
Sh: ShapeBuilder<Dim = D>,
{
let shape = shape.into_shape();
let size = size_of_shape_checked_unwrap!(&shape.dim);
let mut v = Vec::with_capacity(size);
v.set_len(size);
Self::from_shape_vec_unchecked(shape, v)
}
}
impl<S, A, D> ArrayBase<S, D>
where
S: DataOwned<Elem = MaybeUninit<A>>,
D: Dimension,
{
/// Create an array with uninitalized elements, shape `shape`.
///
/// The uninitialized elements of type `A` are represented by the type `MaybeUninit<A>`,
/// an easier way to handle uninit values correctly.
///
/// Only *when* the array is completely initialized with valid elements, can it be
/// converted to an array of `A` elements using [`.assume_init()`].
///
/// **Panics** if the number of elements in `shape` would overflow isize.
///
/// ### Safety
///
/// The whole of the array must be initialized before it is converted
/// using [`.assume_init()`] or otherwise traversed.
///
/// ### Examples
///
/// It is possible to assign individual values through `*elt = MaybeUninit::new(value)`
/// and so on.
///
/// [`.assume_init()`]: ArrayBase::assume_init
///
/// ```
/// use ndarray::{s, Array2};
/// use ndarray::Zip;
/// use ndarray::Axis;
///
/// // Example Task: Let's create a column shifted copy of the input
///
/// fn shift_by_two(a: &Array2<f32>) -> Array2<f32> {
/// // create an uninitialized array
/// let mut b = Array2::maybe_uninit(a.dim());
///
/// // two first columns in b are two last in a
/// // rest of columns in b are the initial columns in a
///
/// assign_to(a.slice(s![.., -2..]), b.slice_mut(s![.., ..2]));
/// assign_to(a.slice(s![.., 2..]), b.slice_mut(s![.., ..-2]));
///
/// // Now we can promise that `b` is safe to use with all operations
/// unsafe {
/// b.assume_init()
/// }
/// }
///
/// use ndarray::{IntoNdProducer, AssignElem};
///
/// // This function clones elements from the first input to the second;
/// // the two producers must have the same shape
/// fn assign_to<'a, P1, P2, A>(from: P1, to: P2)
/// where P1: IntoNdProducer<Item = &'a A>,
/// P2: IntoNdProducer<Dim = P1::Dim>,
/// P2::Item: AssignElem<A>,
/// A: Clone + 'a
/// {
/// Zip::from(from)
/// .apply_assign_into(to, A::clone);
/// }
///
/// # shift_by_two(&Array2::zeros((8, 8)));
/// ```
pub fn maybe_uninit<Sh>(shape: Sh) -> Self
where
Sh: ShapeBuilder<Dim = D>,
{
unsafe {
let shape = shape.into_shape();
let size = size_of_shape_checked_unwrap!(&shape.dim);
let mut v = Vec::with_capacity(size);
v.set_len(size);
Self::from_shape_vec_unchecked(shape, v)
}
}
}